EUSO-SDA Subsystem DOC. REFERENCE: EUSO-SDA-REP-014-1

ISSUE: 1.0
. REVISION: 1.0

ESAF User G u |de DATE: 4th October 2004
PAGE 1/27

Euso Simulation and Analysis Framework

User Guide

Feb 26, 2004 - Version 1.0
Doc. Ref. EUSO-SDA-REP-014-1

M. Pallavicini ! and A. Thea 2

Istituto Nazionale di Fisica Nucleare & Universitd di Genova
Italy

Abstract
This is the ESAF User Guide

le-mail: Marco.Pallavicini@ge.infn.it
2e-mail: Alessandro. Thea@ge.infn.it

e ! &

mailto:Marco.Pallavicini@ge.infn.it
mailto:thea@ge.infn.it

EUSO-SDA Subsystem DOC. REFERENCE: EUSO-SDA-REP-014-1

ISSUE: 1.0

. REVISION: 1.0

ESAF User Gmde DATE: 4th October 2004

PAGE 2/27

Contents

1 Introduction 3
1.1 Requirements L 3
1.2 Gettingthe code 4
1.3 Compiling and Linking 5
1.4 Updating thecode L. 5
1.5 Buildingoptions. Lo 5
1.6 Cleaning and rebuilding o000 6
2 Running Simu 6
2.1 The configuration files 7
2.2 The Root File Format 7
3 The Reconstruction code 12
3.1 Overviewo 12
3.2 Class structure e 13
321 Input. 13
3.2.2 Event 13
3.2.3 Framework e 14
3.2.4 Modules 14
3.2.5 Configuration and utilities 14
3.3 Timesequence i i e e e e e e e 15
Appendix 17
A Acknowledgements 18
B References 18
C Configuration files references 19
D Pictures 24

&

EUSO-SDA Subsystem DOC. REFERENCE: EUSO-SDA-REP-014-1
ISSUE: 1.0

. REVISION: 1.0

ESA F U ser G u Id e DATE: 4th October 2004
PAGE 3/27

1 Introduction

ESAF stands for Euso Simulation and Analysis Framework. It is a software framework
developed for the Extreme Universe Space Observatory, EUSO.

It is an integrated software designed to handle the event simulation chain (shower
development simulation, light production due to fluorescence and Cerenkov, atmo-
spheric effects, light transport to the Euso detector and the response of the Euso
detector itself) and the reconstruction and analysis of both simulated events and of
the real events.

This note is a simple User Guide, therefore very little space is devoted to the
description of the internal structure of ESAF and of the code. The reader should look
at the ESAF document in the bibliography.

The topic addressed in this document are basically the following:

e Requirements

Getting the source code

Compiling, linking and updating

Running Simu

Output Root file structure

e The reconstruction code

The ESAF code is written in C++ and Fortran and is based on the ROOT pack-
age [2]. Although the code is written in a highly portable way, because of lack of man
power we support the Linux platform only.

The compiler is the standard gce version 3.2 or higher [3]. Several Linux distribu-
tions have been used in the recent years without major problems.

Even if we do NOT give any support, we encourage the user to try to port the code
to different UNIX platforms if needed, because it should not create major problems.

1.1 Requirements

gcce version 3.2 or higher must be installed on your system. Type gcc -v to get the
version. If you get an error here, you don’t have gcc at all!

ROOT must be installed and configured; the ROOTSYS environment variable must
be properly set and must point to a recent version of ROOT (3.10.2 or higher).
Development is carried on using the last pro version available (differences among
new, pro and old are explained on ROOT website) therefore we strongly suggest

m:r?
K immonn: 3

EUSO-SDA Subsystem DOC. REFERENCE: EUSO-SDA-REP-014-1
ISSUE: 1.0

. REVISION: 1.0

ESA F U ser G u ICI e DATE: 4th October 2004
PAGE 4/27

keep the ROOT version up to date. If you do not know how to set the ROOTSYS
variable, ask your local system manager.

g77 The Fortran compiler sometimes is not included in the Linux distribution. Make
sure that it is installed on your machine and eventually contact your computer
administrator to get it.

zlib We use compressed ASCII files and we need the zlib library [4]. This is a very
standard library available for any UNIX platform. Be sure that you have it.

1.2 Getting the code

The ESAF code is available through CVS (Concurrent Version System) [5] from the
CVS server at the Lyon in2p3 Computing Center. The code is available in ”read-only”
mode for normal users and in read/write mode for developers.

In the normal read-only mode, the user should configure his ssh directory first.
Inside your directory .ssh, create an ASCII file named config with the following
lines:

Host cvs.in2p3.fr
Port 2222
User euso
PasswordAuthentication yes
RSAAuthentication no
PubkeyAuthentication no
ForwardX11l no
ForwardAgent no

Then the user should set the following UNIX environment variables (see CVS man-
ual for details):

[user]# export CVSROOT=euso@cvs.in2p3.fr:/cvs/euso/
[user]# export CVS_RSH=ssh

After these settings are done you are ready to get the code with the standard CVS
command:

[user]# cvs co esaf

The developer that needs write acces to the CVS repository must get in contact
with the ESAF group and get an account at the Lyon CC. The complete documentation
about Lyon CVS accounts are available on the Lyon CC webpage [0].

JN,F?
K immonn: 4

EUSO-SDA Subsystem DOC. REFERENCE: EUSO-SDA-REP-014-1
ISSUE: 1.0

. REVISION: 1.0

ESA F U ser G u Id e DATE: 4th October 2004
PAGE 5/27

1.3 Compiling and Linking

Once you have the ESAF source code, compiling is a very simple task. Just enter into
the ESAF directory that CVS has created in the place where you typed cvs co esaf
and then type make.

The compilation and linking may take several minutes, depending on the machine
you are using. If everything went fine, at the end you should have 2 executable files in
the bin/i686 directory, named Simu and Reco.

Compilation and or Linking may fail for several reasons; if so, and you didn’t
modified the code, make sure that all requirements are satisfied.

1.4 Updating the code

ESAF is continuously updated (developing and debugging); in most cases changes are
small and don’t affect ESAF’s behaviour deeply. On the contrary sometimes are so
significant to require a total rebuild of the code and may and affect also the output files
so that they are not compatible between different versions of the program. Therefore
we advise to keep the code up-to-date. To do this just go in esaf directory and type
at the system prompt

[user]# cvs up -d

This updates files that are changed, deleted or created; the optiona flag -d is needed
when new directory has been added to the repository. This doesn’t occur often, so
basically you can just type cvs up.

It is also possible to update each directory or file indipendently running cvs up
from the directory itself (as long as in that directory there is a subdirectory CVS).

There is an ESAF CVS mailing list that keeps the users informed whenever new
code is committed to the repository and that sends the list of the modified files. If you
are interested to receive these mails, you are invited to contact the authors.

1.5 Building options

In the main ESAF directory the Rules file contains the compilation options.

The most important option for the user is ESAFTMP; this variable points to the
directory where make saves the temporary object files for creation of libraries and
binaries. Default directory is:

ESAFTMP = /tmp

m?r?
K immonn: 5

EUSO-SDA Subsystem DOC. REFERENCE: EUSO-SDA-REP-014-1
ISSUE: 1.0

. REVISION: 1.0

ESA F U ser G u ICI e DATE: 4th October 2004
PAGE 6/27

In some cases is advisable to change the default directory (editing the file Rules)
because the directory /tmp, present in all systems, is generally emptied when you
reboot the machine.

In ESAFTMP directory contains ESAFTMP.username/architeture/ in which are
other subdirectories, one for each library of ESAF.

1.6 Cleaning and rebuilding

Sometimes, after a major change or when an obsolete file is removed from repository
make could fail to rebuild ESAF. This is due to old temporary files in ESAFDIR that
conflicts with the new code. To get rid of them two ways exist.

In most cases make is able to clean ESAFDIR by itself. Just go in esaf/ directory
and type

[user]# make clean
[user]# make

If also make clean fails or the compilation is still broken, ESAFDIR must be deleted
by hand.

[user]# cd [ESAFTMP]
[user]# rm -rf
[user]# cd [ESAFDIR]
[user]# make

As last chance, if you still have problems, you can delete the entire esaf/ and the
ESAFTMP directories and reinstall ESAF.

The other options in the file Rules is DEBUG, for compiling with (DEBUG = 1) or
without (DEBUG = 0) debugger support.

2 Running Simu

If you successfully compiled and linked ESAF, you have two binary files in your
esaf/bin/i686 directory.

Before running, check that the environment variable LD_LIBRARY_PATH includes the
esaf/lib/i686 directory. If this is not the case, type the command:

[user]# export ESAFDIR = /home/user/esaf;
[user]# export LD_LIBRARY_PATH=$(LD_LIBRARY_PATH) :$ESAFDIR/1ib/i686

»;;)
K immonn: 6 iﬁﬁg

EUSO-SDA Subsystem DOC. REFERENCE: EUSO-SDA-REP-014-1
ISSUE: 1.0

. REVISION: 1.0

ESA F U ser G u Id e DATE: 4th October 2004
PAGE 7/27

This variable tells the operating system where the dynamic shared libraries are
located. Depending of your system setup, you might have to add the $RO0TSYS/1ib
directory to the same path. You can check whether it is already defined or not by
typing echo $ROOTSYS.

The first binary is Simu. It is the simulation program with the graphical user
interface.

The simplest way to run Simu is the following:

[user]# bin/i686/Simu -b --events=nev

The -b option means that you are running in batch mode, without interactive
windows. If you remove this option, a Graphic User Interface starts. This GUI is right
now a very incomplete demo and should not be used at this stage of development.

The --events option specifies how many events simulate. Default is 1.

All other parameters (a very large number of parameters!) are hidden in the con-
figuration files in the directory esaf/config.

To change the behaviour of the program right now the best way is to edit these
files. The meaning of each variable is described into the files themselves. In the next
section we give just the list of these files with their general meaning. Please refer to
the code to have more details.

2.1 The configuration files

Most of the ESAF behaviour, both running Simu and Reco, is controlled by the value
of a set of variables written into several configuration files.

All configuration files are stored in the esaf/config directory tree, whose structure
is described in section C.

A Standard directory is also foreseen. This directory will contain a set of standard,
well identified configurations. The idea behind this is that no user will normally have
to change the config files; it will use a standard configuration (selectable from GUI or
with inline command) and will change a very small number of parameters (again from
GUI or inline command). This will be ready soon.

2.2 The Root File Format

The ESAF output is twofold: a ROOTHfile with the descripton of the events and the
detector configuration and a gzipped ASCII ”telemetry” file.

The Root file contains two object of type TTree. The former, etree, is basically a
collection of EEvent objects, each of them containing all information concerning one

m?r?
K immonn: 7

EUSO-SDA Subsystem DOC. REFERENCE: EUSO-SDA-REP-014-1
ISSUE: 1.0

. REVISION: 1.0

ESA F U ser G u Id e DATE: 4th October 2004
PAGE 8/27

event. The latter, runpars, holds a set of maps with the parameters of the detector
(ERunParameters) during the events simulation.

For a deeper understanding of the TTree object or any other relevant concept
related to ROOT the reader should read the ROOT documentation.

The EEvent object is made of a set of list of sub-objects (TCLonesArrays of objects)
and some single sub-objects.

The EEvent elements are the following:

e fHeader This is a single object of type EHeader. It contains general infos about
the event. Right now only:

— fHeader.fNum Event number. Progressive starting from 0.

— fHeader.fRun Run number. Fixed and not relevant for MonteCarlo right
now. It will be important when a complete data base handling will be
included.

e fTruth This is a single object of type ETruth. It contains general infos about
the Monte Carlo truth.

— fTruth.

fTrueEnergy Primary EECR energy in eV

— fTruth.fTrueTheta Incidence angle (rad) from normal to earth in shower
ref. system
— fTruth.fTruePhi Azimuth (¢ = 0 corresponds Y=0)

— fTruth.
— fTruth.
— fTruth.
— fTruth.
— fTruth.

— fTruth
— fTruth
— fTruth

fTrueParticleName [20] Particle name

fTrueParticleCode Same as name with code instead of strings
fTrueInitPos[3] First interaction point (3D coord, Km)
fTrueX1 Interaction depth in g/cm?

fTrueEarthImpact [3] Impact of shower on earth (clouds ignored)

.fTrueEarthAge Age of the shower at impact
.fTrueShowerMaxPos [3] Shower max position (3D coord, Km)

.fTrueShowerXMax Shower max depth in g/cm?

e fShower This is a single object of type EShower. It contains general infos about
the Monte Carlo truth of the Shower only. More detailed informations. Not filled

yet.

e fDetector This is a single object of type EDetector. Very general infos about
detector response:

-
INFN

‘ ~ lstivem Naxbemale
1 Fsies Nucheare:

:

EUSO-SDA Subsystem DOC. REFERENCE: EUSO-SDA-REP-014-1
ISSUE: 1.0

. REVISION: 1.0

ESA F U ser G u ICI e DATE: 4th October 2004
PAGE 9/27

— fDetector.fNumGtu Total number of GTUs in which there was activity

— fDetector.fGtuStart First GTU with data

— fDetector.fGtuEnd Last GTU in data

— fDetector.fNumCell Number of macrocells with data

— fDetector.fTimeFirstGtu Time (ns) corresponding to first edge first gtu
— fDetector.fTimeLastGtu Time (ns) corresponding to second edge last gtu

— fDetector.fGtuLength Time duration (ns) of one GTU

e fNumPhotons Single integer variable. Number of photons in fPhotons array

e fNumFee Single integer variable. Number of EFee objects in fFee

e fNumAFee Single integer variable. Number of EAFee objects in fAFee

e fNumCells Single integer variable. Number of EMacrocell objects in fMacrocell.

e fNumCellHits Single integer variable. Number of EMacroCellHit objects in
fData.

e fFirstTime Single float variable. Time of the first photon entering pupil (ns)
e fLastTime Single float variable. Time of the last photon entering pupil (ns)

e fPhotons This is a TClonesArray of objects EPhoton. Each EPhoton contains the
whole history of any physical photon that has entered the detector and has been
traced inside Euso. In the following, nn is an index from 0 to fNumPhotons-1.

— fPhotons [nn] . fType Photon type (Cerenkov or fluorescence or nightglow)
— fPhotons[nn] .fState True if photon absorbed in atmosphere

— fPhotons [nn] . fShowerPos [3] Position in the Shower

— fPhotons[nn] .fTheta Photon direction at pupil

— fPhotons[nn] .fPhi 7 7 7 ”

— fPhotons [nn] .fLambda Photon wave length

— fPhotons[nn] .fTime Time at pupil

— fPhotons[nn] .fHitOnIFS True if photon crosses the Ideal Focal Surface
— fPhotons[nn] .fMadeSignal True if signal in the pmt

— fPhotons[nn] .fMadeCount True if signal was counted in chip

— fPhotons[nn] .fMadeFastOR True if was counted in macrocell

;N:r?
K immonn: 9

EUSO-SDA Subsystem DOC. REFERENCE: EUSO-SDA-REP-014-1
ISSUE: 1.0

. REVISION: 1.0

ESA F U ser G u ICI e DATE: 4th October 2004
PAGE 10/27

— fPhotons [nn] .fHistory Code of last position of the photon
— fPhotons [nn] .fFate Return flag of the module in which photon ends
— fPhotons [nn] . fMacroCell Macrocell number hit

— fPhotons [nn] .fPmt Pmt number

— fPhotons [nn] . fPmtCh Pmt channel

— fPhotons[nn] .fFe Fe chip

— fPhotons [nn] .fFeCh Fe channel

— fPhotons [nn] . £fGtu Gtu number this photon belongs to

— fPhotons[nn] .fPixelUid Unique pixel id

— fPhotons[nn] .fSignalId Identifier of the PmtSignal object
— fPhotons [nn] .fXCell X coordinate in macrocell (column)
— fPhotons[nn] .£fYCell Y coordinate in macrocell (row)

— fPhotons[nn] .fPos[3] Last known position of the photon

— fPhotons[nn] .fIdealFocalPos[3] Euso coordinate on the ideal focal sur-
face

— fPhotons[nn] .fCharge Pmt charge associated with this photon.
— fPhotons [nn] .fIPeak Peak current at input of front end chip.

— fPhotons[nn] .fSignalTime Time when pmt signal occurs (ns)

e fData This is a TClonesArray of objects EMacrocellHit. Each EMacrocellHit
contains the relevant data for single pixel seen by a Macrocell above threshold.
In the following, nn is an index from 0 to fNumMacrocellHits-1.

— fData[nn] .fCellId MacroCell identifier

— fDatal[nn] .fRow X coordinate internal to macrocell (integer)

— fData[nn] .fCol Y coordinate internal to macrocell (integer)

— fData[nn].fGtu Gtu number

— fData[nn] .fTheta Theta angle seen by the pixel in field of view
— fData[nn] .fPhi Phi angle seen by the pixel in the field of view
— fData[nn] .fTime Time relative to first triggering GTU

e fFee This is a TClonesArray of objects EFee. Each EFee contains the relevant
data for single pixel seen by the front end electronics. In the following, nn is an
index from 0 to fNumFee-1.

;N:r?
K immonn: 10

EUSO-SDA Subsystem DOC. REFERENCE: EUSO-SDA-REP-014-1
ISSUE: 1.0

. REVISION: 1.0

ESA F U ser G u ICI e DATE: 4th October 2004
PAGE 11/27

fFee[nn] . fMCId MacroCell identifier
fFee[nn] .fGtuld Gtu number

fFee[nn] .fFEIQ Front end chip (integer)
fFee[nn] .fChanId Unique chanel id (integer)

fFee[nn] .fNumHits Number of hits counted

fFee[nn] .fTh Theta angle seen by the pixel in field of view

fFee[nn] .fPh Phi angle seen by the pixel in the field of view

fFee[nn] .fHasTriggered flag if there was trigger or not

fFee[nn] .fCharge Collected charge in this pixel

e fAFee Thisisa TClonesArray of objects EAFee. Each EAFee contains the relevant
data for single pixel seen by the analog front end electronics. In the following,
nn is an index from 0 to fNumAFee-1.

fFee[nn] . fMCId MacroCell identifier
fFee[nn] .fGtuld Gtu number
fFee[nn] . fFEIQ Front end chip (integer)

fFee[nn] .fDyCharge Dynode charge in this gtu

fFee[nn] .fCherTrigg flag for cerenkov trigger

e fMacrocell This is a TClonesArray of objects EMacrocell. Each EMacrocell
contains the relevant data for macrocell that has detected at least one photon.
In the following, nn is an index from 0 to fNumCells-1.

INFN
Pt

fMacrocells[nn]
fMacrocells[nn]
fMacrocells[nn]

fMacrocells[nn]
necessarily mcell)

fMacrocells[nn]
macrocell

fMacrocells[nn]
fMacrocells[nn]

fMacrocells[nn]

.fMCId Macrocell id
.fNumChips Number of front end chips giving signal
.fNumPixels Number of pixels with at least one photon

.fNumCounts Number of counts detected by chips (not
.fNumFastOrs Number of fast or counts detected by

.fHasTriggered Trigger condition occured
.fGtuTrigger Gtu number when trigger occurred

.fTriggerWord Trigger engine identifier word (bitfield)

11

EUSO-SDA Subsystem DOC. REFERENCE: EUSO-SDA-REP-014-1
ISSUE: 1.0

. REVISION: 1.0

ESA F U ser G u Id e DATE: 4th October 2004
PAGE 12/27

3 The Reconstruction code

3.1 Overview

In this section we describe the structure of the Reco code. The logic here is slightly
different from the previous section, because even normal user must have a good un-
derstanding of the Reconstruction framework in order to use it efficiently. Therefore,
some more insight of the internal structure of the framework is given, even if Rule
number 0 of the software developer should always be remembered: the only document
that is always up to date is the code!

The proposed scheme for the organization of the ESAF reconstruction module is
sketched in figure 2. Input data comes either from the simulation module (Root file)
or from the real data stream (pre-processed telemetry)?.

From this figure, the following basic entities/structures can be identified:

e Input module

This modules handles the reading of the events for reconstruction. Foreseen are
the reading of a Root simulation file (already supported) and the reading of
events from the real data stream (pre-processed telemetry).

e Event container

This is the container structure for the input event which we are going to re-
construct. The event container will allow the access the objects holding: event
header information, trigger information and readout information at macrocell
and pixel level. In principle the available information should correspond exactly
to the one available in real data, although test modes in which the “Monte Carlo
truth” is available are also foreseen.

e Reconstruction framework

This is the main structure, which actually builds the chain of modules which will
reconstruct the event. Event reconstruction is divided into different tasks (e.g.
direction reconstruction, energy reconstruction, ...) and for each task different
possible modules may be available. The use of a structure allows to easily re-
place or exclude a given processing module. In this way different algorithms or
algorithm combinations can be compared and tests can be performed.

e Modules

This is the set of processing modules, possibly several alternative modules for
each specific task, that can actually be picked by the user and included in the
reconstruction chain build by the framework.

3Right now, only data input from simulation ROOTfile is available

m:r?
K immonn: 12

EUSO-SDA Subsystem DOC. REFERENCE: EUSO-SDA-REP-014-1
ISSUE: 1.0

. REVISION: 1.0

ESA F U ser G u Id e DATE: 4th October 2004
PAGE 13/27

e Configuration files

Configuration data includes the name and location of the input file and the
definition of the processing modules to load.

The configuration definition in Reco is rather simple for the user point of view
but corresponds to a relatively complex implementation (see below). It allows to
change the base directory for all configuration files, thus allowing to define and
use different full configurations stored in different places.

The reconstruction uses the files stored in config/Reco directory.

e Access to databases

Access to databases will be a major issue in Reco. The reconstruction procedure
will naturally require the access to a run conditions database, as well as to the
detector calibration database. Furthermore, access to atmospheric data (both
collected by the EUSO atmospheric sounding devices or originating from external
sources and databases) will have to be accessed.

This part of the code is, at this early stage, not yet implemented. See below
(future developments) for more information.

This structure is shown in the interactions diagram in figure D.

3.2 Class structure

The basic class diagram of Reco as its present stage is schematically shown in figure D.

The different basic “groups” in the above classification are shown in different
colours. The scheme is described in the sections below, where some design and imple-
mentation aspects are presented.

3.2.1 |Input

There is an abstract interface InputModule from which are built the different concrete
input classes. The existing concrete classes are RootInputModule (for simulation file
reading) and TestInputModule (for test purposes only, not to be used by normal
users).

3.2.2 Event

The main class is the event container, RecoEvent. The event header is stored separately
in a RecoEventHeader class. For each RecoEvent a RecoEventHeader is required.
Event information is kept in the objects RecoCellHit, with macrocell level information
(this is the class defining a hit), RecoPixelData, a generalisation of the previous one

m:r?
K immonn: 13

EUSO-SDA Subsystem DOC. REFERENCE: EUSO-SDA-REP-014-1
ISSUE: 1.0

. REVISION: 1.0

ESA F U ser G u Id e DATE: 4th October 2004
PAGE 14/27

containing pixel level information. Furthermore, RecoCellInfo contains trigger and
macrocell level information and RecoAnalogData holds analog readout information and
RecoPhotoElectronData contains informations about the photoelectrons for test and
debugging.

3.2.3 Framework

The framework is responsible for creating a factory which will generate modules ac-
cording to pre-defined models. Different module types can be selected /unselected. One
and only one input module should exist.

The central class is the RecoFramework class, which will create a factory,
ModuleFactory, able to generate modules according to a given model. RecoModule is
the abstract interface from which are built the different concrete classes defining the
different types of modules. TestRecoModule is an example concrete implementation.
RecoSequence is meant to define a special type of composite module.

3.2.4 Modules

A set of modules will be available for the different reconstruction tasks. As an exam-
ple, a basic clustering algorithm is implemented in the class BaseClusteringModule,
which, just like TestRecoModule, inherits from the abstract interface RecoModule.
This section of the code is currently being implemented, the diagram corresponds to
the status on January 2379,

3.2.5 Configuration and utilities

In this category are included different software tools of interest for both the simulation
and the reconstruction parts of ESAF. This includes code for the following purposes:
configuration handling, object persistency (ROOT), graphic user interface, basic data
and mathematical procedures (units, constants, random number handling, time/orbit
info, ISS time/orbit description...), atmosphere description. As seen in the diagram,
at present configuration handling is already implemented and can serve here as an ex-
ample: EusoConfigurable is the abstract interface that should be used by all classes
that need to access configuration data, in order to create Config, a singleton object
in which the relevant information is stored. All the classes that need to access con-
figuration data should inherit from EusoConfigurable (and call in their definition
the macro EusoConfigurable(type,name). The method Conf() returns a pointer
to a ConfigFileParser object that contains all the parameter values (identifies the
file containing the configuration parameters for the object considered, parses the file,
and stores the parname=parvalue pairs in maps). The ConfigFileParser objects are
created by a factory, Config, This object is a singleton.

m:r?
K immonn: 14

EUSO-SDA Subsystem DOC. REFERENCE: EUSO-SDA-REP-014-1

ISSUE: 1.0

. REVISION: 1.0

ESA F U ser G u ICI e DATE: 4th October 2004
PAGE 15/27

3.3 Time sequence

This section presents a rough and simple-minded temporal sequence view of the control
flow and object interaction during and Reco test run. The purpose is to clarify the
ideas and provide the reader with a simple picture of how it works. A schematic
representation is given in figure D. In the description below, the pure object lifecycle
view is here mixed with a more code-oriented description of the program flow (usually
given in parentheses).

e Building the Framework:

1. A RecoFramework object is created (RecoFramework constructor called in
reco-main.cc):

RecoFramework theFrameWork;

2. get name of the file with module list and read module list (within
RecoFramework constructor);

string sName = Conf ()->getStr("RecoFramework.ModuleFile");
sName = "./config/Reco/"+sName;

3. create factory object ModuleFactory and build module (within
RecoFramework constructor, calling ModuleFactory constructor with mod-
ule list as arguments. In there, modules are built using the MakeModule (),
MakeInputModule() methods of the ModuleFactory).

// build factory
ModuleFactory factory(sName);

// build modules

if (identifier == "InputModule") {
MakeInputModule (name) ;

}

else if (identifier

== "Module") {
MakeModule(name);

}

else if (identifier == "Sequence") {
MakeSequence(name) ;

}

else {
throw runtime_error("Syntax error in file"

JN,F?
K immonn: 15

EUSO-SDA Subsystem DOC. REFERENCE: EUSO-SDA-REP-014-1

ISSUE: 1.0
. REVISION: 1.0

ESA F U ser G u ICI e DATE: 4th October 2004
PAGE 16/27

+sName+" line "+dummy) ;

e Executing the module chain:

1. Call Execute() method of RecoFramework (back to main, perform some
information dump and then execute framework);

theFrameWork.Dump () ;
theFrameWork.ParseCommandLine (argc,argv) ;
try {

theFrameWork.Execute () ;
}
catch(exception &e) {

cerr << "RECO Error: " << e.what() << endl;
cerr << "Euso Reco Program Exiting" << endl;
exit(1);
}

2. initialize input module and the other modules (Init() methods of
TestInputModule and TestRecoModule classes);

// init input module
fInputModule->Init();

// init all modules

for(it = fModules.begin(); it != fModules.end(); it++) {
if (! it->second->Init()) {
cerr << "Module " << it->first << " failed\n";
throw runtime_error("Init failed");

3. get event into a RecoEvent object (a RecoEvent object is created and the
GetEvent() method of TestInputModule is invoked);

// run
while (RecoEvent *anEvent = fInputModule->GetEvent()) {

4. process the event through each module (the methods PreProcess(),
Process() and PostProcess() of TestRecoModule are invoked);

e 16 &%

EUSO-SDA Subsystem DOC. REFERENCE: EUSO-SDA-REP-014-1
ISSUE: 1.0

. REVISION: 1.0

ESA F U ser G u ICI e DATE: 4th October 2004
PAGE 17/27

for(it = fModules.begin(); it != fModules.end(); it++) {
if (! it->second->PreProcess())
break;
if (! it->second->Process(anEvent))
break;
if (! it->second->PostProcess())
break;

5. destroy the event (method DestroyEvent () of TestInputModule);

fInputModule->DestroyEvent () ;

6. done with all modules (Done () methods of input and other modules).

// end all modules

fInputModule->Done () ;

for(it = fModules.begin(); it != fModules.end(); it++) {
it->second->Done();

Procedures 1 to 5 are obviously repeated for each event, and persistency is han-
dled before the event is destroyed.

e 17 &%

EUSO-SDA Subsystem DOC. REFERENCE: EUSO-SDA-REP-014-1

ISSUE: 1.0
. REVISION: 1.0

ESAF User G u |de DATE: 4th October 2004
PAGE 18/27

A Acknowledgements

We thank C. Espirito Santo for her help on the reconstruction sections and for several
pictures. We also thank R. Pesce for several useful comments.

B References

References

[1] D. De Marco and M. Pallavicini, EUSO-SIM-ESAF-001-01, available on LiveLink
[2] The ROOT System http://root.cern.ch

[3] GNU Compiler Collection Homepage http://gcc.gnu.org

[4] Zlib library homepage http://www.gzip.org/zlib

[5] Concurrent Version System http://www.cvshome.org

[6] Service CVS au Centre de Calcul de 'IN2P3 http://cvs.in2p3.fr

g 18 @@?

http://root.cern.ch
http://gcc.gnu.org
http://www.gzip.org/zlib
http://www.cvshome.org
http://cvs.in2p3.fr

EUSO-SDA Subsystem DOC. REFERENCE: EUSO-SDA-REP-014-1
ISSUE: 1.0

. REVISION: 1.0

ESA F U ser G u ICI e DATE: 4th October 2004
PAGE 19/27

C Configuration files references

In this section are described very briefly most of the variable of the config directory.
Basically each file is associated to the class with the same name and format used for

the variables is the following:

<ClassName>.<VariableName> =

<Value>

Anyway there exists files like Run.cfg and Euso.cfg that holds general purpose
variables. Due to a lack of space, in the tables Filename has been stripped.

Table 1: Variables stored in files of directory config/General

Variable Name | Units | Description

Euso.cfg
fRadius m Euso radius
fAltitude km Euso altitude
fEarthRadis km Earth radius

Run.cfg

fTelemetryOutputFile - Name of the telemetry file
fRootOutputFile - Name the root file
fEnableRoot - Enables rootfile output
fRunNumber - Run number
fRunDate - Date of the run

Table 2: Variables stored in files of directory config/LightToEuso

Variable Name | Units | Description
StandardLightToEuso.cfg
fGenerator - Event generator choice
fLightSource - Source of light choice
fRadiativeTransfer - Radiative transporter choice
TestLightToEuso.cfg
To BE DONE
FileUnisimLightToEuso.cfg
To BE DONE
SlastLightToEuso.cfg
fEarthRadius km | Earth Radis
fISSVectorX km | EUSO X coordinate from ground
fISSVectorY km | EUSO Y coordinate from ground
IN,?
L./F:‘;::?:::t, 19

EUSO-SDA Subsystem

ESAF User Guide

DOC. REFERENCE: EUSO-SDA-REP-014-1
ISSUE: 1.0
REVISION: 1.0
DATE: 4th October 2004
PAGE 20/27

Table 2: (... continued)

Variable Name Units | Description
fISSVectorZ km | EUSO Z coordinate from ground
fFOV deg | EUSO Field of View
fEntrancePupilDiameter m EUSO Entrance Pupil Diameter
fWaveRangeMin nm | Minimum wavelength
fWaveRangeMax nm | Maximum wavelength
fDoCherenkov - Enable Cherenkov
fDoFluorescence - Enable fluorescence
fAtmosphericType - Atmosphere profile
fAtmTemperature K Atmosphere Temperature
(valid only for US Standard)
fAlbedo - Earth Albedo
fGTU JI%s EUSO Gate Time Unit
fAtmCurvature - Atmosphere (Curved or Planar)
fInteractionVectorX km | first point of shower (X coord.)
fInteractionVectorY km | first point of shower (Y coord.)
fInteractionVectorZ km | first point of shower (Z coord.)
fThetaRangeMin deg | Omnmin
fThetaRangeMax deg | Omaz
fEnergyRangeMin eV Minimum energy to generate
fEnergyRangeMax eV Maximum energy to generate
fRandomEnergy - Energy randomizing algorithm
fUhecrType - UHECR type:
— Atomic mass for nuclei
— 1001 for v
fEnergyDistribution- Parametrization for the energy
Parametrization) distribution
Table 3: Variables stored in files of directory
config/RadiativeTransfer
Variable Name ‘ Units | Description
ALL To BE DONE
Ground.cfg
Lowtran.UserModel.cfg
Lowtran.cfg
LowtranFactory.cfg
RadiativeFactory.cfg

INFN
Pt

20

EUSO-SDA Subsystem DOC. REFERENCE: EUSO-SDA-REP-014-1
ISSUE: 1.0

. REVISION: 1.0

ESA F U ser G u ICI e DATE: 4th October 2004
PAGE 21/27

Table 3: (... continued)

Variable Name | Units | Description
RadiativeTransfer.cfg

Table 4: Variables stored in files of directory config/Atmosphere

Variable Name ‘ Units | Description
ALL To BE DONE
AtmosphereFactory.cfg
LinsleyAtmosphere.cfg
MSISE_OOAtmosphere.cfg
MSISE_OOAtmosphereData.cfg

Table 5: Variables stored in files of directory config/Electronics

Variable Name ‘ Units ‘ Description
FrontEndChip.cfg

fTimeResolution ns Chip resolving time

fGain - PreAmp gain

fThreshold uA | Current thresh.

fCounterThreshold counts | Digital thresh.

fGainSpread - Spread in PreAmp gain

fThreshSpread uA | Spread in curr. thr.

fTriggerGroups - Group logic code

R7600M64Photomultiplier.cfg
and R8900M36Photomultiplier.cfg

fPmtQuantum - Quantum efficiency
fPmtGain - Charge Gain
fPmtGainsigma - Spread in Charge Gain
fPmtTimeWidth ns Signal base width
fPmtDoNightGlow bool | Add night glow if true
fPmtNightGlowRate GHz | NG rate per pixel
fPmtSide - Number of channels
fPmtSize mm | Physical size lateral
fPmtDeadLateral mm | Dead space at border
fPmtDeadInner mm | Dead internal space
ElectronicsFactory.cfg
fMacroCellType string ‘ Type of macrocell

JN,F?
o 21

EUSO-SDA Subsystem DOC. REFERENCE: EUSO-SDA-REP-014-1
ISSUE: 1.0
ESAF User Gl.“de gi\T/]IES:ION: 4th October 2010.2
PAGE 22/27
Table 5: (... continued)
Variable Name Units | Description
fFrontEndType string | Type of FE chip
fPmtType string | Pmt Type
fPmtFile string | obsolete
fFile string | obsolete
fTelemetryType string | output file format
fAfeeType string | Select AFEE
fElementaryCellType string | Type of macrocell
Table 6: Variables stored in files of directory config/Optics
Variable Name | Units | Description
ALL To BE DONE
DetectorTransportManager.cfg
ElecTestDetTransManager.cfg
FakeOpticalAdaptor.cfg
FastFocalPlane.cfg
FileGenerator.cfg
IdealOpticalAdaptor.cfg
JIdealFocalSurface.cfg
KIdealFocalSurface.cfg
KOpticalSystem.cfg
LensGenerator.cfg
OpticsAnalyzer.cfg
PipesOpticalAdaptor.cfg
TestBaffle.cfg
TestFocalPlane.cfg
TestOpticalAdaptor.cfg
TestOpticalSystem.cfg
WallInteraction.cfg
EusoMapping.cfg
OpticsFactory.cfg

Table 7: Variables stored in files of directory config/LightSource

Variable Name

| Units

Description

AL To BE DONE

INFN
e

22

EUSO-SDA Subsystem DOC. REFERENCE: EUSO-SDA-REP-014-1
ISSUE: 1.0

. REVISION: 1.0

ESA F U ser G u ICI e DATE: 4th October 2004
PAGE 23/27

Table 7: (... continued)

Variable Name | Units | Description

CrkvPhoton

.cfg

FileLightSource.

cfg

FluorescenceFactory.

cfg

LidarLightSource.

cfg

LightSource.

cfg

LightningLightSource.

cfg

MeteoritesLightSource.

cfg

TestLightSource

.cfg

INFN
Pt 23

EUSO-SDA Subsystem DOC. REFERENCE: EUSO-SDA-REP-014-1

ISSUE: 1.0
. REVISION: 1.0
ESAF User G u |de DATE: 4th October 2004
PAGE 24/27
D Pictures
[Ej:ﬂ.ﬁ.p?].i :-:l.t-:i.n:l.J

LightToSuso)p oo s oo e =l Sunolet

Figure 1: Basic objects in the top layers of ESAF [1].

Simulation T root file REAL DATA
4 / configuration files

Inpui Module
! RecoF ramework

RecoE vent & tmospheric images and [Bs analysis
Lidar Dala and/or AS Analvsis
External, possibly remote Data Bases
| Patter Recognition
Atmosphere DB
s i — Track fitting
: Get Theta-Phi
Detector DB
| Get X max
) = == 2 1 Get H max
Space Station Orbit Infos DB :
| Find energy
— Particle Identification

Calibration DB

Figure 2: Proposed structure for the ESAF reconstruction module.

A

INFN
Istivam Naxismale 2 4

1 Fsics Nuckeare

EUSO-SDA Subsystem

DOC. REFERENCE:

ESAF User Guide

ISSUE:
REVISION:
DATE:
PAGE

EUSO-SDA-REP-014-1
1.0

1.0

4th October 2004
25/27

Framework
EusoConfiaurabIe(Crey/ &Create
Event Module Factor
2: Maklj/
Event Header
5: GetEvent | Input Module

6: PreProcess, ProcesL, PostProcess

\ﬁ Make

Test Module

DestroyEvent

|

Figure 3: ESAF/Reco simplified interactions diagram (at present development stage).

-
INFN

RecoFrameWork | | ModuleFactory| | InputModule RecoModule RecoEvent |
I I
| Creat I
! reate <~
1 Make <
| -1
L
I Make : s,
| T
| LI
|
Init . <
“T1
. LI
[nit S
Li
Create ~
- GetEvent

Pre-process, Pro

tess, Post-procesg

/

—————y

.. etc..

—-

Figure 4: ESAF/Reco simplified Sequence diagram.

‘ ~ lstivem Naxbemale
1 Fsies Nucheare:

25

(Z 53!
n —
§§ =z o]
z£ =
: £ ¢
(@] EusoConfigurable()
bl Samacenon
1 ~EusoConfigurable()
F
€5 e S -
BaseDialogFactory() -ghFactory
(@] BuidFramo()
A i))
=] R m
~ nputhdodute > c
CoemzEmman
ConligFileParser TroceEvert npuhocilal) wn
i o
~ConfigFileParser() o
m rite EusoRandom RecoEver “ Done() J
\iﬁ:‘!ul"“ﬁﬂ Gsmn;del o GetEy 7
@) Sat Eusggancom) G'Z.'ﬁ:mﬂmmmcmcu P Zeatorerentd fupumioduie C wn
3 SNmACHSMICECO0 12y thuen
3 e B ooy e e o S g
FE) ClassType() T —— GeiRecoEvan) >
0 ChangeContiadit) Ciassnamen “““’“““‘"?&”) 1 SR vend wn
o PutRecoPix
@, BhreacongFicl PliRoconnaogbata) (D v
1 g
-
o
k) 2
T <
w
i RecoGellit (r-s-
= Vescer
P Romrvenendr
) e Siseauno . |3
e
o) o M—, Bt | ey c
i!!ﬁﬁ% e GEL”énsvemHeauem)
etNumLines() Run() Phote
aQ ettt Bt (¢]
— oty BaseClostarnghioduls
) Semumcat
m F‘aucluilcr\nnMaduM)
LI —
»n S AT Honase
o Py TR Bt
[oh o iy :
=g e T —— St
(o] B ot e
& ceEen | enoton fdeaFocares Foa Tdmttnoonsyy |
o B 2 Aot | M s
i ‘RecoCellinfo -RthulnEleclmnDlﬂ(] estroyEve Eventpy coutel o
(=] ame Bade) Sﬁ‘a?m\égmuu ToOEKUO
RecoCellinfo() e iactoCell estroyt
o o e el i > Hono
HasTriggered() SetxCell Clau vlﬂ Q H < d O
=) = e || SR e °
eSianderdConigDefined() Gaieee == m =
S ol s ey
o SSnaaiconiaa) 1 Adatho o &
sV Btllwca — S =
< Lum tandardConfigs()
Fecanraiogbatal) =
DU GetGtu()
T =
GetFeld()
s &
9] Z
@ a Q
o, EConst) R —
D e
) EarnRadus) SetunDatel 5
s,
< SeiEventtime() G
@ Eacior SEvenitimel w0
o
evocon
o g LS t
fector()
= e =
B i) E
) D Q .
= Tovose s =+l
= pm— =X &=
Eusasioaben, =
[¢]
n = |
=+ Do [}
& SN =
0= Rl
¢} Nk OO
p—

(3
HZ ,)
¥
it
esaf
packages M
0p]
[I I I I I > |m
:ﬂ analysis tools reconstruction simulation common application M G
°E o
= _ c |8
@ — input — base wn >
t includ includ - 3
= - include — include o B
i —src —src c g
F — event — config o
\ (D
= . .
@ — include — include
))
3) —src — src
e — framework — gui
5; HURGY
& include — include >G50
5 src — src @ S50
o — modules — root 3 g
< z 9
= 2 3
8 include — include o
= src L src Z
P L atmosphere g
include g
src %
configuration Y o
= S
e =
g =
oa =
o) las]
o S
I8 =
RSl
BN G e

	1 Introduction
	1.1 Requirements
	1.2 Getting the code
	1.3 Compiling and Linking
	1.4 Updating the code
	1.5 Building options
	1.6 Cleaning and rebuilding

	2 Running Simu
	2.1 The configuration files
	2.2 The Root File Format

	3 The Reconstruction code
	3.1 Overview
	3.2 Class structure
	3.2.1 Input
	3.2.2 Event
	3.2.3 Framework
	3.2.4 Modules
	3.2.5 Configuration and utilities

	3.3 Time sequence

	Appendix
	A Acknowledgements
	B References
	C Configuration files references
	D Pictures

